Robb T. Koether

Hampden-Sydney College

Fri, Jan 27, 2017

«40>» «F)>r « > = E vQ

° Classes

9 Class Design
@ Constructors and Destructors
@ Inspectors and Mutators
@ Operators and Facilitators

© Member Access

e Structs

e Assignment

Robb T. Koether (Hampden-Sydney College) Classes Fri, Jan 27, 2017 2/28

0 Classes

9 Class Design
@ Constructors and Destructors
@ Inspectors and Mutators
@ Operators and Facilitators

Q Member Access

0 Structs

Q Assignment

«0>» «F>» « Er» «

it
v
it

12N G4

class Name

{

// Member function prototypes
}i

// Declarations of data members

@ The class construct in C++ is an enhancement of the struct
construct in C.

«0O0>» «F» «)>» « Q>

it
v

class Point
{
public:

// Various member functions

private:

int x;

int y;
}i

«0O0>» «F» «)>» « Q>

it
v

Class Members

@ Members may be desighated public, private, Or protected.
@ Members are private by default.
@ Members may be objects or functions.

Robb T. Koether (Hampden-Sydney College) Classes Fri, Jan 27, 2017 6/28

@ Classes

Q Class Design
@ Constructors and Destructors
@ Inspectors and Mutators
@ Operators and Facilitators

Q Member Access

0 Structs

Q Assignment

«0>» «F>» « Er» «

it
v
it

12N G4

Class Design

@ Many of the member functions of a class fall into one of the
following categories.
e Constructor
o Destructor
e Inspector
e Mutator
e Operator
e Facilitator

Robb T. Koether (Hampden-Sydney College) Classes Fri, Jan 27, 2017 8/28

0 Classes

Q Class Design
@ Constructors and Destructors
@ Inspectors and Mutators
@ Operators and Facilitators

Q Member Access

Q Structs

Q Assignment

«0O0)» «F» « =) «

it
v
it

12N G4

Constructors and Destructors

@ A constructor creates a new object in a class.
@ A destructor destroys an object.
@ A class may have many constructors, but only one destructor.

Robb T. Koether (Hampden-Sydney College) Classes Fri, Jan 27, 2017 10/28

Point ()

: x(0), y(0) {}
Point (int xval, int yval) x(xval), y(yval) {}
“Point () {}

[m]

=

Fri, Jan 27, 2017

12N G4

11/28

0 Classes
Q Class Design
@ Constructors and Destructors

@ Inspectors and Mutators
@ Operators and Facilitators

Q Member Access

Q Structs

Q Assignment

«0O0)» «F» « =) «

it
v
it

12N G4

Inspectors and Mutators

@ An inspector returns an attribute of an object.

@ A mutator modifies an attribute of an object.

@ Typically, the attributes involved are the data members.
@ Typically, inspectors are const and take no parameters.

@ Typically, mutators take one or more parameters and they return
void.

@ Whenever appropriate, the mutators should test the parameters
for validity.

Robb T. Koether (Hampden-Sydney College) Classes Fri, Jan 27, 2017 13/28

int getX () const {return x;}
void setX (int xval)

{x =

xvalj; }

[m]

=

Fri, Jan 27, 2017

12N G4

14/28

int x()

const {return m_x;}
void x (int xval)

{m_x =

xval; }

[m]

=3

Fri, Jan 27, 2017

12N G4

15/28

0 Classes

Q Class Design
@ Constructors and Destructors
@ Inspectors and Mutators
@ Operators and Facilitators

Q Member Access

Q Structs

Q Assignment

«0O0)» «F» « =) «

it
v
it

12N G4

Operators and Facilitators

@ An operator is a function that is invoked by a symbol such as + or
*.

@ A facilitator is invoked by a non-member operator to perform the
function of the operator.

@ Nearly every class should have the following operators.

@ The assignment operator =.
e The output operator <<.

Robb T. Koether (Hampden-Sydney College) Classes Fri, Jan 27, 2017 17/28

Equality and Relational Operators

@ |t is always sensible to define the operators == and ! =.
@ lItis not always sensible to define the operators <, >, <=, and >=.

@ If there is a sensible meaning of <, then the other three can be
defined as well.

@ If < is undefined, then operations such as sorting are impossible.

Robb T. Koether (Hampden-Sydney College) Classes Fri, Jan 27, 2017 18/28

Input and Output Operators

@ The output operator << can be very useful for debugging.

@ The input and output operators >> and << should always be
“compatible.”

@ That is, the input operator should be designed to read the same
format that the output operator uses.

@ The Point class outputs a pointas (2, 3).

Robb T. Koether (Hampden-Sydney College) Classes Fri, Jan 27, 2017 19/28

Input and Output Operators

{out <<

void output (ostreamé& out)

const
(<< x << "
ostream& operator<< (ostreamé& out,

, " <<y <<
{p.output (out); return out;}

")}

const Pointé& p)

Robb T. Koether (Hampden-Sydney College)

Classes

a
Fri, Jan 27, 2017

20/28

@ Classes

9 Class Design
@ Constructors and Destructors
@ Inspectors and Mutators
@ Operators and Facilitators

e Member Access

0 Structs

Q Assignment

«0>» «F>» « Er» «

it
v
it

12N G4

Member-Access Operators

Member-Access Operators

Point p;

Pointx ptr = &p;

cout << p.getX() << ' ' << p.get¥();

cout << ptr-—>getX() << ' ' << ptr->get¥();

@ Use the dot operator . to access members through an object.
@ Use the arrow operator —> to access members through a pointer
to an object.

Robb T. Koether (Hampden-Sydney College) Classes Fri, Jan 27, 2017 22/28

0 Classes

9 Class Design
@ Constructors and Destructors
@ Inspectors and Mutators

@ Operators and Facilitators

e Member Access

° Structs

e Assignment

«0>» «F>» « Er» «

it
v
it

12N G4

struct Name

{

1

// Declarations of data members

@ C and C++ support the struct construct.

«Or «Fr «=>» 12N G4

v

}i

struct Point
{

int x;

int vy;

a

«O>» «F» -

Struct Members

@ InC:
e Struct members are public.
e Members may be objects, but not functions.
@ In C++:
e Struct members may be designated public, private, or
protected.
e Members are public by default.
e Members may be objects or functions.

Robb T. Koether (Hampden-Sydney College) Classes Fri, Jan 27, 2017 26/28

@ Classes

9 Class Design
@ Constructors and Destructors
@ Inspectors and Mutators
@ Operators and Facilitators

Q Member Access

0 Structs

6 Assignment

«0>» «F>» « Er» «

it
v
it

12N G4

@ Read Sections 10.11 - 10.13. I

	Classes
	Class Design
	Constructors and Destructors
	Inspectors and Mutators
	Operators and Facilitators

	Member Access
	Structs
	Assignment

